

CBSE Class-1 Physics Quick Revision Notes Chapter-01: Electric Charges and Fields

- Like Charges and Unlike Charges:
 - Like charges repel and unlike charges attract each other.

• Conductors and Insulators:

Conductors allow movement of electric charge through them, insulators do not.

• Quantization of Electric Charge:

It means that total charge (q) of a body is always an integral multiple of a basic quantum of charge (e)

q = ne

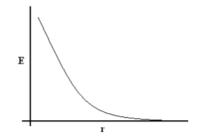
where $n = 0, \pm 1, \pm 2, \pm 3,$

• Additivity of Electric Charges:

Total charge of a system is the algebraic sum of all individual charges in the system.

• Conservation of Electric Charges:

The total charge of an isolated system remains uncharged with time.


• Superposition Principle:

It is the properties of forces with which two charges attract or repel each other are not affected by the presence of a third (or more) additional charge(s).

• The Electric Field E at a Point due to a Charge Configuration:

It is the force on a small positive test charges q placed at the point divided by a magnitude

$$\frac{\mid q \mid}{4\pi \varepsilon_0 r^2}$$

It is radially outwards from q, if q is positive and radially inwards if q is negative.

E at a point varies inversely as the square of its distance from *Q*, the plot of *E* versus *r* will look like the figure given below.

• Coulomb's Law:

The mutual electrostatic force between two point charges q_1 and q_2 is proportional to the product q_1q_2 and inversely proportional to the square of the distance r_{21} separating them.

$$\vec{F}_{21}(force \text{ on } q_2 \text{ due to } q_1) = \frac{k(q_1q_2)}{r_{21}^2} r_{21}$$

Where r_{21} is a unit vector in the direction from q_1 to q_2 and $k = \frac{1}{4\pi\varepsilon_0}$ is the

proportionality constant.

• An Electric Field Line:

It is a curve drawn in such a way that the tangent at each point on the curve gives the direction of electric field at that point.

• Important Properties of Field Lines:

These are:

(i) Field lines are continuous curves without any breaks.

(ii) Two field lines cannot cross each other.

(iii) Electrostatic field lines start at positive charges and end at negative charges – they cannot form closed loops.

• Electric Field at a Point due to Charge q:

$$\vec{E} = \frac{\vec{F}}{q}$$

• Electric Field due to an Electric Dipole in its Equatorial Plane at a Distance r from the Centre:

$$E = \frac{-p}{4\pi\varepsilon_0} \frac{1}{(a^2 + r^2)^{\frac{3}{2}}}$$
$$\approx \frac{-p}{4\pi\varepsilon_0}, \text{ for } r >>a$$

• Electric Field due to an Electric Dipole on the Axis at a Distance r from the Centre:

$$E = \frac{2pr}{4\pi\varepsilon_0 (r^2 - a^2)^2}$$
$$\equiv \frac{2p}{4\pi\varepsilon_0 r^3}, \text{ for } r >> a$$

• A Dipole Placed in Uniform Electric Field E experiences:

Torque $\vec{\tau}$,

$$\vec{\tau} = \vec{p} x \vec{E}$$

• The Electric Flux:

 $\phi = \int d\phi = \int \vec{E} \cdot d\vec{s}$ is a 'dot' product, hence it is scalar.

 $\Delta \phi$ is positive for all values of $\theta < \frac{\pi}{2}$

 $\Delta \phi$ is negative for all values of $\theta > \frac{\pi}{2}$

• Gauss's Law:

The flux of electric field through any closed surface S is $1/\epsilon 0$ times the total charge enclosed by S.

 $\phi = \int \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$

- Electric field outside the charged shell is as though the total charge is concentrated at the centre. The same result is true for a solid sphere of uniform volume charge density.
- The electric field is zero at all points inside a charged shell.

• Electric field E, due to an infinitely long straight wire of uniform linear charge density λ :

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}.\hat{n}$$

where r is the perpendicular distance of the point from the wire and is the radial unit vector in the plane normal to the wire passing through the point.

• Electric field E, due to an infinite thin plane sheet of uniform surface charge density σ:

$$E = \frac{\sigma}{2\varepsilon_0} \cdot \hat{n}$$

Where n is a unit vector normal to the plane, outward on either side.

• Electric field E, due to thin spherical shell of uniform surface charge density σ :

$$E = \frac{q}{4\pi\varepsilon_0 r^2} \cdot r \quad (r \ge R)$$
$$E = 0 \qquad (r < R)$$

where r is the distance of the point from the centre of the shell and R the radius of the shell, q is the total charge of the shell & $q = 4\pi R^2 \sigma$.

• Electric field E along the outward normal to the surface is zero and σ is the surface charge density. Charges in a conductor can reside only at its surface. Potential is constant within and on the surface of a conductor. In a cavity within a conductor (with no charges), the electric field is zero.